Maximum Likelihood Estimation of Intrinsic Dimension
نویسندگان
چکیده
We propose a new method for estimating intrinsic dimension of a dataset derived by applying the principle of maximum likelihood to the distances between close neighbors. We derive the estimator by a Poisson process approximation, assess its bias and variance theoretically and by simulations, and apply it to a number of simulated and real datasets. We also show it has the best overall performance compared with two other intrinsic dimension estimators.
منابع مشابه
Intrinsic Dimension Estimation by Maximum Likelihood in Probabilistic PCA
A central issue in dimension reduction is choosing a sensible number of dimensions to be retained. This work demonstrates the asymptotic consistency of the maximum likelihood criterion for determining the intrinsic dimension of a dataset in a isotropic version of Probabilistic Principal Component Analysis (PPCA). Numerical experiments on simulated and real datasets show that the maximum likelih...
متن کاملRegularized Maximum Likelihood for Intrinsic Dimension Estimation
We propose a new method for estimating the intrinsic dimension of a dataset by applying the principle of regularized maximum likelihood to the distances between close neighbors. We propose a regularization scheme which is motivated by divergence minimization principles. We derive the estimator by a Poisson process approximation, argue about its convergence properties and apply it to a number of...
متن کاملIntrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA
A central issue in dimension reduction is choosing a sensible number of dimensions to be retained. This work demonstrates the surprising result of the asymptotic consistency of the maximum likelihood criterion for determining the intrinsic dimension of a dataset in an isotropic version of Probabilistic Principal Component Analysis (PPCA). Numerical experiments on simulated and real datasets sho...
متن کاملConsistency of Restricted Maximum Likelihood Estimators of Principal Components by Debashis Paul1 And
In this paper we consider two closely related problems: estimation of eigenvalues and eigenfunctions of the covariance kernel of functional data based on (possibly) irregular measurements, and the problem of estimating the eigenvalues and eigenvectors of the covariance matrix for highdimensional Gaussian vectors. In [A geometric approach to maximum likelihood estimation of covariance kernel fro...
متن کاملComparative assessment of the accuracy of maximum likelihood and correlated signal enhancement algorithm positioning methods in gamma camera with large square photomultiplier tubes
Introduction: The gamma cameras, based on scintillation crystal followed by an array of photomultiplier tubes (PMTs), play a crucial role in nuclear medicine. The use of square PMTs provides the minimum dead zones in the camera. The camera with square PMTs also reduces the number of PMTs relative to the detection area. Introduction of a positioning algorithm to improve the spat...
متن کامل